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Abstract

(+)-L-Noviose, the sugar moiety of the antibiotic novobiocin, has been synthesized diastereoselectively using a
man-made sugar building block. © 2000 Elsevier Science Ltd. All rights reserved.
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The antibiotic novobiocirl carries a sugar moiety which is responsible for its biological actlvity.
The sugar moiety was found to be removed under acidic conditions to gbnéthyl-5,5-dimethyl-
lyxose, (+)t-noviosé€ 2 (Fig. 1). Although this rare sugar has been synthesizedboth racemic and
enantiomeric forms, only one procedure, namely, that by Pankau and Rféisising a chiral building
block* seemed to be the most practical so far. In relation to our recent project on sugar synthesis, we
chose (+)e-noviose?2 as a target to extend the synthetic applicability of our sugar building Bfo8k
which was originally designed for the diastereocontrolled construction of eight possible aldohexoses in
both enantiomeric forma/ We wish to report here a new synthesis of (+poviose?2 starting from
our sugar building block® (+)-3 which was prepared from furfural in enantiomerically pure forms by
employing either a chemicaf or an enzymatiprocedure (Scheme 1).
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Fig. 1.

Owing to its biased structure, the building block 3having a dioxabicyclo[3.2.1]octane frame-
work allowed diastereoselective epoxidation from the convex face on reaction with alkaline hydrogen
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Scheme 1.

peroxidé to give theexoepoxide4 as a single product. Reduction dfwith sodium borohydride-
cerium(lll) chlorid€ also took place diastereoselectively from the convex face to givertealcohol
5[ ]p%"+17.7 € 1.1, CHC}), as a single product. Benzoylation®followed by treating the resulting
benzoates, [ [p?°® 18.2 € 1.1, CHCE), with boron trifluoride etherat® in toluene brought about
regio- and diastereoselective epoxy cleavage to give the monobenzoate rBixMitbout separation,
the mixture was subjected to alkaline methanolysis to give the singlé©twbich allowed specific ketal
formation to afford the crystalline hydroxy-acetonit® mp 109-110°C, [[p%° 52.2 € 1.1, CHC}),
as the single product. The observed diastereoselective conversion of the epmtméhe single triold
may be readily presumed by taking account of the participation of the benzoate group which produced
the benzoate mixtur@through6aand7 as shown.

Having created three consecutive oxygen-bearing stereogenic centers, which are those required in the
target molecule, the secondary alcohflwas first treated with methyl iodide under standard conditions
to give the methyl ethet1, [ ]p%°® 53.9 € 1.0, CHC}h), whose benzyl functionality was then removed
under hydrogenolysis conditions to give the crystalline primary alchBoip 83-84°C, [ ]p?’ 85.5
(c 1.0, CHCE). Mesylation of12 followed by treating the resulting mesylai& with lithium iodide
afforded the iodidel4, [ ]1p?® 47.8 € 1.0, CHC}), without difficulty. Overall yield of14 from (+)-3
was 54% in 10 steps (Scheme 2).
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Scheme 2. Reagents and conditions: (i) 3099 0.5N NaOH, THF, 0°C. (ii) NaBg-CeCk 7H,0, MeOH, 0°C (82% for
two steps). (iii) BzCl, pyridine, CELCl, (96%). (iv) Bl OEL, toluene. (v) NaOMe, MeOH. (vi) M&€£(OMe),, PPTS (cat.),
toluene, reflux (84% for three steps). (vii) Mel, NaH, THF (99%). (viii}, H0% Pd—C, MeOH (91%). (ix) MesCl, &,
CH,Cl,. (x) Lil, THF, reflux (90% for two steps)

In order to attain the target molecule, the iodiewas treated with zinc in methanolic acetic acid
to initiate reductive elimination to cleave the internal acetal functionality to give rise to the hemiacetal

15 as a mixture of epimers. Since an anhydro-sugar type internal acetal functionality requires rather
severe conditions for its hydrolytic cleavage, the sugar building bBoekerts its potential with respect
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to this point. On oxidation with tetrapropylammonium perruthenate in the presenderafrphorine
N-oxide (TPAP-NMOY11 15 gave the -lactone16, mp 59-60°C, []p2° +89.9 ¢ 1.1, CHC}), as
colorless needles (Scheme 3). Treatmerit@ivith an excess amount of methyllithium gave the acyclic
diol 17, [ ]p?’ 51.7 € 1.0, CHC}), whose extra two-carbon moiety was oxidatively removed under
Lemieux—Johnson conditiotfsto give the hemiacetdl9 via the transient hydroxy-aldehyd®. Finally,
19 was acid-hydrolyzed in the presence of Dowex 583\ remove the acetonide protecting group to
give rise to (+)t-noviose2, mp 128-129°C, []p?° +31.2 £ 0.94, 50% EtOH) [litt&: mp 128°C, [ ]p?°
29.2 €£1.00, 50% EtOH) fob-enantiomer], as colorless crystals. Overall yiel@&fom 14 was 43%.
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Scheme 3. Reagents and conditions: (i) Zn, AcOH:MeOH (1:10) (97%). (i) TPAP-NMO, 4 A sieve§|L90%). (iii)
MeLi, THF, 0°C (83%). (iv) OsQ (cat.), NalQ, 50% aq. THF. (v) Dowex 50-W, ¥D, 70°C (59% for two steps)

In summary, we have synthesized (+)ioviose2 in 23% overall yield in 15 steps with complete
diastereoselection from our sugar building block 8#)n the basis of its inherent convex-face selectivity
and high functionality.
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